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Abstract
The analytical properties of the lattice Green function

G(2n, n, n;w) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos 2nθ1 cos nθ2 cos nθ3

w − cos θ1 − cos θ2 − cos θ3
dθ1 dθ2 dθ3

are investigated, where n is an integer and w is a complex variable. In particular,
it is shown that G(2n, n, n;w) is a solution of a fourth-order linear differential
equation of the Fuchsian type. From this differential equation it is found that
G(2n, n, n;w) can be evaluated in terms of a product of two Heun functions
{Hj(n, v) : j = 1, 2}, where

v ≡ v(w) = 1

w2

(
1 +

√
1 − 1

w2

)−1 (
1 +

√
1 − 9

w2

)−1

.

A detailed discussion of the properties of {Hj(n, v) : j = 1, 2} is then
given. The Heun function results are used to prove that the product form
for G(2n, n, n;w) can be expressed in terms of complete elliptic integrals of
the first and second kinds. It is also demonstrated that G(2n, n, n;w) can be
written in the hypergeometric form

wG(2n, n, n;w) =
(

1
4

)
n

(
3
4

)
n

(n!)2

(
w2

w2 + 3

)1/2
w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n

× 2F1

(
1

4
,

3

4
; n + 1; η+

)
2F1

(
1

4
,

3

4
; n + 1; η−

)
where

η± ≡ η±(w) = 1

2
+

w2

2(3 + w2)2

√
1 − 1

w2

[
±16 + (5 − w2)

√
1 − 9

w2

]
and (a)n denotes the Pochhammer symbol. This formula is valid for varying
values of w in the neighbourhood of w = ∞, provided that the argument
function η+(w) does not take real values in the interval (1, +∞). Finally,
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this 2F1 product form is used to determine the asymptotic behaviour of
G(2n, n, n;w) as n → ∞.

PACS numbers: 02.30.Gp, 05.50.+q

1. Introduction

The simple cubic lattice Green function

G(�,m, n;w) = 1

π3

∫ π

0

∫ π

0

∫ π

0

cos �θ1 cos mθ2 cos nθ3

w − cos θ1 − cos θ2 − cos θ3
dθ1 dθ2 dθ3 (1.1)

where {�,m, n} is a set of integers and w = w1 + iw2 is a complex variable, is of frequent
occurrence in many lattice statistical problems which involve the simple cubic lattice with
isotropic nearest-neighbour interactions (Berlin and Kac 1952, Duffin 1953, Maradudin et al
1960, Montroll and Weiss 1965, Joyce 1972, Kobelev et al 2002). The triple integral (1.1)
defines a single-valued analytic function G(�,m, n;w) in a complex (w1, w2) plane which is
cut along the real axis from w = −3 to w = +3. We shall denote the set of points (w1, w2) in
this cut plane by C−. It is readily found from (1.1) that G(�,m, n;w) satisfies the symmetry
relation

G(�,m, n;−w) = (−1)�+m+n+1G(�,m, n;w). (1.2)

We see, therefore, that it is only strictly necessary to analyse the properties of (1.1) for points
w ∈ C− which have Re(w) � 0. It can also be assumed, without loss of generality, that
� � m � n � 0.

For many applications in solid-state physics (Koster and Slater 1954, Wolfram and
Callaway 1963, Katsura et al 1971b) one needs to know the limiting behaviour of
G(�,m, n;w) as w approaches the upper and lower edges of the cut in the (w1, w2) plane. It
is convenient, therefore, to introduce the definitions

G±(�,m, n;w1) ≡ lim
ε→0+

G(�,m, n;w1 ± iε) ≡ GR(�,m, n;w1) ∓ iGI(�,m, n;w1) (1.3)

where −3 < w1 < 3. When |w1| � 3 the imaginary part of G±(�,m, n;w1) is always equal
to zero. Wolfram and Callaway (1963) have proved that (1.3) can be written in the single
integral form

G±(�,m, n;w1) = (∓i)�+m+n+1
∫ ∞

0
exp(±iw1t)J�(t)Jm(t)Jn(t) dt (1.4)

where −3 < w1 < 3 and Jn(t) denotes a Bessel function of the first kind of order n. When
� + m + n is an even integer it follows from (1.3) and (1.4) that

GR(�,m, n;w1) = (−1)(�+m+n)/2
∫ ∞

0
sin(w1t)J�(t)Jm(t)Jn(t) dt (1.5)

GI(�,m, n;w1) = (−1)(�+m+n)/2
∫ ∞

0
cos(w1t)J�(t)Jm(t)Jn(t) dt. (1.6)

Similar formulae can also be obtained when � + m + n is an odd integer.
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Joyce (2002) has used the recursion relation procedures developed by Morita (1975) to
show that G(�,m, n;w) can be evaluated exactly in the ξ parametric form

(3/w)�+m+nwG(�,m, n;w) = R0(�,m, n; ξ) + R1(�,m, n; ξ)

[
2

π
K(k)

]2

+ R2(�,m, n; ξ)

[
2

π
K(k)

] [
2

π
E(k)

]
+ R3(�,m, n; ξ)

[
2

π
E(k)

]2

(1.7)

where K(k) and E(k) are complete elliptic integrals of the first and second kind respectively,
with a modulus

k ≡ k(ξ) = 4ξ 3/2

(1 − ξ)3/2(1 + 3ξ)1/2
. (1.8)

The parameter ξ and the variable w are connected by the relation

ξ ≡ ξ(w) = 1

w

(
1 +

√
1 − 1

w2

)−1/2 (
1 +

√
1 − 9

w2

)−1/2

(1.9)

and {Rj(�,m, n; ξ) : j = 0, 1, 2, 3} is a set of rational functions of ξ which are obtained
recursively. It was also noted by Joyce (2002) that the formula (1.7) for {G(n, n, n;w) :
n = 1, 2, 3, 4} and {G(2n, n, n;w) : n = 1, 2, 3, 4} could all be factorized in terms of a
product of two linear forms in K(k) and E(k) whose coefficients are polynomials in the
parameter ξ . On the basis of these limited results it was conjectured that the factorization
property for G(n, n, n;w) and G(2n, n, n;w) is valid for all integer values of n.

Recently, Joyce and Delves (2004) in paper I have investigated the detailed analytical
properties of the diagonal Green function G(n, n, n;w). In this work a proof of the
factorization conjecture for G(n, n, n;w) was given. Our main aim in paper II is to carry
out a similar analysis for the Green function G(2n, n, n;w). In particular, it will be proved
in section 2 that G(2n, n, n;w) is a solution of a fourth-order differential equation of the
Fuchsian type. In section 3 we shall use this differential equation to show that G(2n, n, n;w)

can be expressed in terms of a product of two Heun functions {Hj(n, v) : j = 1, 2}, where
v ≡ v(w) = ξ 2(w). The properties of {Hj(n, v) : j = 1, 2} are discussed in sections 4
and 5, while in section 6 we shall use the Heun function results to prove the factorization
conjecture for G(2n, n, n;w). The asymptotic behaviour of G(2n, n, n;w) as n → ∞ will
be determined in section 8.

2. Basic results for the Green function G(2n, n, n; w)

In this section we shall derive a fourth-order differential equation for G(2n, n, n;w).

2.1. Series expansion for G(2n, n, n;w) about w = ∞
We begin by applying the formula

α−1 =
∫ ∞

0
exp(−αt) dt (2.1)

where Re(α) > 0, to the integrand denominator in (1.1). The resulting multiple integral can
then be simplified using the well-known result

1

π

∫ π

0
cos(nθ) exp(t cos θ) dθ = In(t) (2.2)
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where In(t) denotes a modified Bessel function of the first kind. In this manner, we find that

G(2n, n, n;w) =
∫ ∞

0
exp(−wt)I2n(t)[In(t)]

2 dt (2.3)

where Re(w) � 3.
We now consider the Taylor series expansion

I2n(t)[In(t)]
2 = 1

(n!)2(2n)!

(
t

2

)4n ∞∑
m=0

am(n)

(
t

2

)2m

(2.4)

where |t | < ∞ and a0(n) = 1. A formula for the coefficient am(n) in (2.4) can be determined
by considering the generating function identity

0F1(−; 2n + 1; x)
[

0F1(−; n + 1; x)
]2 ≡

∞∑
m=0

am(n)xm (2.5)

where 0F1 denotes a generalized hypergeometric series. If the standard relation (see Erdélyi
et al (1953), p 185)[

0F1(−; n + 1; x)
]2 = 1F2

(
n + 1

2 ; n + 1, 2n + 1; 4x
)

(2.6)

is applied to (2.5) it is readily found that

am(n) = 1

(2n + 1)m m!
�m(n) (2.7)

where (2n + 1)m is a Pochhammer symbol and

�m(n) ≡ 3F2

 −m, −m − 2n, n + 1
2 ;

4

n + 1, 2n + 1;

 (2.8)

is a terminating generalized hypergeometric series.
We can determine a recursion relation for �m(n) by using a REDUCE computer algebra

package which involves an implementation of the method of Zeilberger (1990). Hence, we
obtain

(m + n + 1)(m + 3n + 1)(m + 4n + 1)�m+1(n) −
[
(3n + 1)(4n + 1)(5n + 3)

+ (118n2 + 80n + 13)m + 2(33n + 10)m2 + 11m3
]
�m(n) + m

[
(67n2 − 2n + 3)

+ (76n − 1)m + 19m2
]
�m−1(n) − 9m(m − 1)(m + 2n − 1)�m−2(n) = 0 (2.9)

where m = 0, 1, 2, . . . , with the initial conditions �0(n) = 1 and �−1(n) = �−2(n) ≡ 0.
Finally, we substitute (2.4) in the integral representation (2.3). This procedure yields the

required series expansion

G(2n, n, n;w) = (4n)!

24n(n!)2(2n)!

1

w4n+1

∞∑
m=0

µm(n)

w2m
(2.10)

where |w| � 3 and

µm(n) = (4n + 2m)!

22m(4n)!(2n + 1)m m!
�m(n) (2.11)

with µ0(n) = 1.
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2.2. Fourth-order differential equation for G(2n, n, n;w)

In order to derive a differential equation for G(2n, n, n;w) we first apply the formula (2.11)
to (2.9). After carrying out some algebraic simplifications we find that the coefficients
{µm(n) : m = 0, 1, 2, . . .} satisfy the four-term recursion relation

16(m + 1)(m + n + 1)(m + 3n + 1)(m + 4n + 1)µm+1(n)

− 8(2m + 4n + 1)
[
(3n + 1)(4n + 1)(5n + 3) + (118n2 + 80n + 13)m

+ 2(33n + 10)m2 + 11m3
]
µm(n) + 4(2m + 4n + 1)(2m + 4n − 1)

× [
(67n2 − 2n + 3) + (76n − 1)m + 19m2

]
µm−1 − 9(2m + 4n + 1)

× (2m + 4n − 1)(2m + 4n − 2)(2m + 4n − 3)µm−2 = 0 (2.12)

where m = 0, 1, 2, . . . , with the initial conditions µ0(n) = 1 and µ−1(n) = µ−2(n) ≡ 0.
It follows from the relation (2.12) and the series (2.10) that the Green function

G(2n, n, n;w) is a solution of the fourth-order differential equation

L4,n(G) = 0 (2.13)

where the differential operator

L4,n = 16z4(z − 1)2(9z − 1) D4
z + 8z3(z − 1)(171z2 − 131z + 8) D3

z

+ 4z2
[
756z3 + 3(12n2 − 359)z2 − (56n2 − 355)z + 10(2n2 − 1)

]
D2

z

+ 2z2
[
648z2 + 12(12n2 − 59)z − (128n2 − 127)

]
Dz

− (4n2 − 1)(16n2 − 1) (2.14)

and Dz = d/dz, with z = 1/w2.

3. Analysis of the differential equation L4,n(G) = 0

Our main aim in this section is to investigate the properties the differential equation (2.13). In
particular, we shall show that the general solution of L4,n(G) = 0 can be expressed in terms
of products of solutions of two second-order Heun differential equations. It follows from this
result that G(2n, n, n;w) can be written in terms of a product of two Heun functions.

3.1. Singularity structure of the differential equation (2.13)

The basic differential equation (2.13) is of the Fuchsian type with four regular singular points
at z = 0, 1

9 , 1 and ∞. The Riemann P-symbol (see Ince (1927), p 370) associated with
equation (2.13) is given by

P



0 1
9 1 ∞

1
2 (1 + 4n) 0 0 0
1
2 (1 − 4n) 1 1 1 z

1
2 (1 + 2n) 2 1

2 2
1
2 (1 − 2n) 1

2
3
2

1
2


. (3.1)

In this scheme, the singular points are placed on the first row with the roots of the corresponding
indicial equations beneath them. For an arbitrary Nth order Fuchsian equation with ν regular
singular points in the finite z plane and a regular singular point at z = ∞, it can be shown
(Ince (1927), p 371) that the sum of all the exponents in the Riemannian scheme is an invariant
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equal to 1
2N(N − 1)(ν − 1). We see directly from (3.1) that the differential equation (2.13)

has the correct Fuchsian invariant of 12.
It is clear from (3.1) that the expansion (2.10) with z = 1/w2 will give a series solution

of (2.13) which is associated with the exponent 1
2 (1 + 4n) at z = 0. We also find that (2.13)

has a simple algebraic solution of the type

G ≡ G(a)(n, z) = z
1
2 (1−2n)(1 − z)1/2

n−1∑
m=0

gm(n)zm (3.2)

where g0(n) ≡ 1 and n = 1, 2, . . . . When n � 2 the coefficients {gm(n) : m = 1, 2, . . .} in
(3.2) can be generated using the four-term recursion relation

2(m + 1)(m + n + 1)(m − 2n + 1)(m − 3n + 1)gm+1(n)

− (m − n + 1)(2m − 2n + 1)
[
(4 + n)(1 − 3n) + 11(1 − 2n)m + 11m2

]
gm(n)

+ 2(m − n)(m − n + 1)
[
5(1 + 2n2) − 38nm + 19m2

]
gm−1(n)

− 9(m − n)(m − n + 1)(m − n − 1)(2m − 2n − 1)gm−2(n) = 0 (3.3)

where m = 0, 1, 2, . . . , n − 2, with the initial conditions g0(n) = 1, g−1(n) ≡ 0 and
g−2(n) ≡ 0. From this result we obtain the explicit formulae

G(a)(2, z) = 1

z3/2
(1 − z)3/2 (3.4)

G(a)(3, z) = 1

16z5/2
(1 − z)1/2(16 − 28z + 15z2) (3.5)

G(a)(4, z) = 1

10z7/2
(1 − z)3/2(10 − 14z + 9z2). (3.6)

3.2. Product solutions for the differential equation (2.13)

It can be proved by following a method recently described by Delves and Joyce (2001,
pp 81–4) that any solution of the differential equation L4,n(G) = 0 can be expressed in the
product form

G(z) = z−1/2(1 − z)−1/2(1 − 9z)−1/2Y1(n, z)Y2(n, z) (3.7)

where Y1(n, z) and Y2(n, z) are appropriate solutions of the second-order differential equations[
D2

z + U+(n, z)
]
Y = 0 (3.8)

and [
D2

z + U−(n, z)
]
Y = 0 (3.9)

respectively. The coefficients U±(n, z) in these equations are given by

U±(n, z) = (1 − 5n2)

4z2
+

(7 − 41n2)

4z
+

3

16(1 − z)2
+

(35 − 16n2)

128(1 − z)

+
243

16(1 − 9z)2
+

243(7 − 48n2)

128(1 − 9z)
± n2

z2(1 − z)
√

1 − 9z
. (3.10)

Next we shall carry out a direct verification of the important results (3.8)–(3.10). In the
first stage of the analysis we note that, if Y1(n, z) and Y2(n, z) are solutions of (3.8) and (3.9)
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respectively, then the product Y1(n, z)Y2(n, z) is a solution of the fourth-order differential
equation (Orr 1900, Watson 1944, p 146),

Dz

[
D3

zY + 2(U+ + U−) DzY + Y Dz(U+ + U−)

(U+ − U−)

]
+ (U+ − U−)Y = 0 (3.11)

where Dz = d/dz, U± = U±(n, z) and U+ �= U−. We now use the particular formula (3.10)
to evaluate and simplify the general equation (3.11). Finally, the transformation

Y = z1/2(1 − z)1/2(1 − 9z)1/2G (3.12)

is applied to the dependent variable in the differential equation. This procedure yields the
expected equation L4,n(G) = 0.

3.3. Transformation of (3.8) and (3.9) to Heun differential equations

If the independent variable in the algebraic differential equations (3.8) and (3.9) is transformed
from z to v using the formula (Joyce 1994, 1998)

z = 4v(1 − v)(1 − 9v)

(1 − 9v2)2
(3.13)

then we find that Y1(n, v) and Y2(n, v) satisfy rather complicated differential equations of the
type [

D2
v + p+(n, v) Dv + q+(n, v)

]
Y1(n, v) = 0 (3.14)

and [
D2

v + p−(n, v) Dv + q−(n, v)
]
Y2(n, v) = 0 (3.15)

respectively, where p±(n, v) and q±(n, v) are rational functions of v, and Dv = d/dv.
It is possible to simplify (3.14) and reduce it to a standard form by applying the further

transformation

Y1(n, v) = v(n+1)/2(1 − v)(1−n)/2(1 − 9v)(1−3n)/2(1 − 9v2)−3/2

× (1 − 2v + 9v2)1/2(1 − 18v + 9v2)1/2y1(n, v). (3.16)

In this manner, we deduce that y1(n, v) is a solution of the Heun differential equation (Snow
1952, Ronveaux 1995)

d2y

dv2
+

(
n + 1

v
+

1 − n

v − 1
+

1 − 3n

v − 1
9

)
dy

dv
+

1
3 (1 − 3n)(3v − 1)

v(v − 1)
(
v − 1

9

) y = 0. (3.17)

The application of the transformation

Y2(n, v) = v(3n+1)/2(1 − v)(1−3n)/2(1 − 9v)(1−n)/2(1 − 9v2)−3/2

× (1 − 2v + 9v2)1/2(1 − 18v + 9v2)1/2y2(n, v) (3.18)

to (3.15) enables one to show that y2(n, v) is a solution of another Heun equation

d2y

dv2
+

(
3n + 1

v
+

1 − 3n

v − 1
+

1 − n

v − 1
9

)
dy

dv
+

[
(1 − n)v − 1

3 (3n + 1)
]

v(v − 1)
(
v − 1

9

) y = 0. (3.19)

If we make the substitutions v = 1
9u

and y = ũy in (3.17) and (3.19) it is found that the two
Heun equations are transformed into each other with v ≡ u and y ≡ ỹ.
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3.4. Heun function product form for G(2n, n, n;w)

The Heun differential equations (3.17) and (3.19) are of the Fuchsian type with four regular
singular points at v = 0, 1

9 , 1 and ∞. The Riemann P-symbol (see Ince (1927), p 370)
associated with equation (3.17) is given by

P


0 1

9 1 ∞
0 0 0 1 v

−n 3n n 1 − 3n

 (3.20)

while the P-symbol for (3.19) is

P


0 1

9 1 ∞
0 0 0 1 v

−3n n 3n 1 − n

 . (3.21)

We see directly from these results that the Heun equations have the correct Fuchsian invariant
of 2.

It follows from the P-symbols that in the neighbourhood of the singularity v = 0 the
Heun equations (3.17) and (3.19) will have series solutions of the type

y = Hj(n, v) ≡
∞∑

m=0

h(j)
m (n)vm (j = 1, 2) (3.22)

respectively, where |v| < 1
9 and

{
h

(j)

0 (n) ≡ 1 : j = 1, 2
}
. We can generate the coefficients{

h(1)
m (n) : m = 1, 2, . . .

}
and

{
h(2)

m (n) : m = 1, 2, . . .
}

using the recursion relations

(m + 1)(m + n + 1)h
(1)
m+1(n) −

[
3(1 − 3n) + 2(5 − 9n)m + 10m2

]
h(1)

m (n)

+ 9m(m − 3n)h
(1)
m−1(n) = 0 (3.23)

and

(m + 1)(m + 3n + 1)h
(2)
m+1(n) −

[
3(1 + 3n) + 2(5 + 9n)m + 10m2

]
h(2)

m (n)

+ 9m(m − n)h
(2)
m−1(n) = 0 (3.24)

respectively, where m = 0, 1, 2, . . . , with the initial conditions
{
h

(j)

0 (n) = 1 : j = 1, 2
}
. If

we adopt the notation used by Snow (1952) then we can write H1(n, v) and H2(n, v) in the
form

H1(n, v) = F
(

1
9 ,− 1

3 + n; 1, 1 − 3n, 1 + n, 1 − 3n; v
)

(3.25)

and

H2(n, v) = F
(

1
9 ,− 1

3 − n; 1, 1 − n, 1 + 3n, 1 − n; v
)

(3.26)

respectively, where F(a, b;α, β, γ, δ; v) denotes a general Heun function. We note that
the second independent series solutions of the Heun equations (3.17) and (3.19) exhibit
singularities at v = 0 which involve logarithmic terms. In the neighbourhood of the point
v = ∞ the Heun differential equations for H1(n, v) and H2(n, v) also have series solutions
1
v
H2

(
n, 1

9v

)
and 1

v
H1

(
n, 1

9v

)
, respectively.

We now take our solution of L4,n(G) = 0 to be the series expansion (2.10) for the Green
function G(2n, n, n;w) in powers of 1/w. For this particular case the solution of L4,n(G) = 0
does not have a logarithmic singularity at w = ∞ and it is clear, therefore, that the relevant
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Figure 1. The region D1 in the v plane.

solutions of the Heun equations (3.17) and (3.19) are constant multiples of H1(n, v) and
H2(n, v) respectively. Finally, we combine equations (3.7), (3.13), (3.16), (3.18) and (3.22)
in order to obtain the formula

wG(2n, n, n;w) = Cn(1 − 9v2)

[
v

(1 − v)(1 − 9v)

]2n

H1(n, v)H2(n, v) (3.27)

where Cn does not depend on the variable v. We must determine Cn by taking the limit v → 0
in (3.27) and comparing the result with the leading-order term in (2.10), with v ∼ (2w)−2.
Hence we obtain the required Heun function product form

wG(2n, n, n;w) = (4n)!

(n!)2(2n)!
(1 − 9v2)

[
v

(1 − v)(1 − 9v)

]2n

H1(n, v)H2(n, v). (3.28)

The general connection between the variables v and w can be established by finding the inverse
of the transformation (3.13), with z = 1/w2. This procedure gives

v(w) = 1

w2

(
1 +

√
1 − 1

w2

)−1 (
1 +

√
1 − 9

w2

)−1

. (3.29)

We have checked the final results by using (3.29) to expand the product form (3.28) in powers
of 1/w, and agreement was found with the series expansion (2.10).

The transformation function v(w) maps all the points w ∈ C− into a region D1 in the
v plane which forms part of the disc |v| � 1

3 . This image region is shown in figure 1. The
boundary points of D1 are associated with the edges of the cut in the w plane.

4. Hypergeometric representations, recursion relations and operator
identities for {Hj (n, v): j = 1, 2}

In this section, we shall prove that the Heun functions H1(n, v) and H2(n, v) can be expressed
in terms of 2F1 hypergeometric functions, provided that the variable v lies in a sufficiently
small neighbourhood of the origin v = 0. Recursion relations and operator identities are also
derived for H1(n, v) and H2(n, v).
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Figure 2. The regions D1 and D2 in the cut v plane.

4.1. Reduction of the Heun equations (3.17) and (3.19) to hypergeometric form

We begin the analysis by considering the hypergeometric function

Y ≡ Y(n, x) = 2F1

(
1

4
,

3

4
; n + 1; x

)
. (4.1)

It is known that this function is a solution of the differential equation

16x(1 − x)
d2Y
dx2

+ 16[(n + 1) − 2x]
dY
dx

− 3Y = 0. (4.2)

We now apply the rational transformation

x 	→ x1(v) = 64v

(1 + 18v − 27v2)2
(4.3)

to (4.2). In this manner it is found that

v(1 − v)(1 − 9v)(1 + 18v − 27v2)2 d2Y
dv2

+ (1 + 18v − 27v2)

×
[
(n + 1) + 4(9n − 5)v + 18(15n − 7)v2 − 324(3n − 1)v3

+ 243(3n − 1)v4
]dY

dv
− 12(1 − 9v)2Y = 0. (4.4)

Next, the further transformation

Y = (1 + 18v − 27v2)1/2y (4.5)

is applied to (4.4). Hence we find that y = y(n, v) is a solution of the Heun differential
equation (3.17). It is readily seen from this result that

H1(n, v) = (1 + 18v − 27v2)−1/2
2F1

[
1

4
,

3

4
; n + 1; 64v

(1 + 18v − 27v2)2

]
. (4.6)

The formula (4.6) gives a representation for the single-valued analytic function H1(n, v)

provided that v lies in a certain finite region D2 of the cut plane. This region of validity is
shown in figure 2, with the region D1. The points on the boundary of D2 are associated with
values of x = x1(v) which have 1 � x < ∞.

The points v in the upper-half plane Im(v) > 0 that are in D1 and outside D2 form a finite
region which we shall denote by D3. There is also a similar complex conjugate region D∗

3 in
the lower-half plane Im(v) < 0. We can establish 2F1 representations for H1(n, v) which are
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valid in D3 and D∗
3 by using a standard formula (Erdélyi et al (1953), p 110, equation (12))

to construct the analytic continuation of (4.6) across the boundary of the region D2. The final
result is

H1(n, v) = (1 + 18v − 27v2)−1/2

{
2F1

[
1

4
,

3

4
; n + 1; 64v

(1 + 18v − 27v2)2

]

± i
√

2

[
− (1 − v)(1 − 9v)3

64v

]n

2F1

[
1

4
,

3

4
; n + 1; (1 − v)(1 − 9v)3

(1 + 18v − 27v2)2

]}
(4.7)

where the upper and lower signs are valid in D3 and D∗
3 , respectively. We can also use (4.7) to

determine H1(n, v) for points v which lie on the joint boundary between D3 and D∗
3 provided

that we first write v = v1 ± iε, where v1 ∈ [− 1
3 ,− 1

9

(
2
√

3 − 3
)]

, and then take the limit
ε → 0+.

It is possible to obtain similar 2F1 results for H2(n, v) by applying the alternative
transformations

x 	→ x2(v) = 64v3

(1 − 6v − 3v2)2
(4.8)

and

Y = (1 − 6v − 3v2)1/2y (4.9)

to (4.2). In this case, it is found that y = y(n, v) is a solution of the second Heun differential
equation (3.19). It follows, therefore, that H2(n, v) can be written in the form

H2(n, v) = (1 − 6v − 3v2)−1/2
2F1

[
1

4
,

3

4
; n + 1; 64v3

(1 − 6v − 3v2)2

]
. (4.10)

The formula (4.10) gives a representation for the single-valued analytic function H2(n, v)

provided that v lies in a certain closed region D4 of the cut plane. Fortunately, it is not
necessary to construct the analytic continuation of (4.10) across the boundary of D4 because
the region D1 of physical interest lies entirely inside D4.

4.2. Recursion relations for H1(n, v) and H2(n, v)

We now consider the Gauss contiguous relation (see Erdélyi et al (1953), p 104)

(c + 1 − a)(c + 1 − b)x 2F1(a, b; c + 2; x) + (c + 1)
[
c − (2c − a − b + 1)x

]
× 2F1(a, b; c + 1; x) − c(c + 1)(1 − x) 2F1(a, b; c; x) = 0. (4.11)

If this result is applied to (4.6) with a = 1
4 , b = 3

4 , c = n and x = x1(v) we find that H1(n, v)

satisfies the recursion relation

4(4n + 1)(4n + 3)vH1(n + 1, v) + n(n + 1)
[
(1 − 2v + 9v2)(1 − 90v + 81v2)H1(n, v)

− (1 − v)(1 − 9v)3H1(n − 1, v)
]

= 0 (4.12)

where n = 1, 2, . . . . In a similar manner, the application of (4.11) to (4.10) leads to the further
recursion relation

4(4n + 1)(4n + 3)v3H2(n + 1, v) + n(n + 1)
[
(1 − 2v + 9v2)(1 − 10v + v2)H2(n, v)

− (1 − v)3(1 − 9v)H2(n − 1, v)
]

= 0 (4.13)

where n = 1, 2, . . . .
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The important 2F1 representations (4.6) and (4.10) were originally obtained by first using
the Heun equations (3.17) and (3.19) to derive the recursion relations (4.12) and (4.13),
respectively. These recursion relations were then reduced to Laplace form and solved in
terms of hypergeometric functions by following a standard method (Milne-Thomson (1981),
p 491). This alternative deductive approach, which is described in more detail in paper I
(Joyce and Delves (2004)) for the case of the Green function G(n, n, n;w), provides one with
the motivation for the direct analysis given in section 4.1.

4.3. Raising operators for H1(n, v) and H2(n, v)

Next, the Heun function representation (4.6) is applied to the standard formula (see Erdélyi
et al (1953), p 102)

(4n + 1)(4n + 3)(1 − x)−n−1
2F1

(
1

4
,

3

4
; n + 2; x

)
= 16(n + 1)

d

dx

[
(1 − x)−n

2F1

(
1

4
,

3

4
; n + 1; x

)]
(4.14)

with x = x1(v). This procedure yields the relation

H1(n + 1, v) = R̂1,nH1(n, v) (4.15)

where

R̂1,n = (n + 1)

4(4n + 1)(4n + 3)

{
(1 − v)(1 − 9v)(1 + 18v − 27v2) Dv

+
[
(9 + 64n) − 117v + 351v2 − 243v3

]}
(4.16)

is a differential raising operator with Dv ≡ d/dv.
Finally, it can also be shown using (4.10) and (4.14) that

H2(n + 1, v) = R̂2,nH2(n, v) (4.17)

where

R̂2,n = (n + 1)

12(4n + 1)(4n + 3)v2

{
(1 − v)(1 − 9v)(1 − 6v − 3v2) Dv

− 3
[
1 − 9v − (1 + 64n)v2 + 9v3]} (4.18)

and n = 0, 1, 2 . . . .

4.4. Alternative 2F1 representations for H1(n, v) and H2(n, v)

We now apply the quadratic transformation formula (see Erdélyi et al (1953), p 112)

2F1

(
a, a +

1

2
; c; x

)
= (

1 − x
)−a

2F1

[
2a, 2c − 2a − 1; c; 1

2
− 1

2

(
1 − x

)−1/2
]

(4.19)

with a = 1
4 and c = n + 1, to equations (4.6) and (4.10). In this manner, we find that

H1(n, v) = 1

(1 − v)1/4(1 − 9v)3/4 2F1

(
1

2
, 2n +

1

2
; n + 1; k2

1

)
(4.20)

H2(n, v) = 1

(1 − v)3/4(1 − 9v)1/4 2F1

(
1

2
, 2n +

1

2
; n + 1; k2

2

)
(4.21)
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where

k2
1 ≡ k2

1(v) = 1

2
− 1

2

(1 + 18v − 27v2)

(1 − v)1/2(1 − 9v)3/2
(4.22)

k2
2 ≡ k2

2(v) = 1

2
− 1

2

(1 − 6v − 3v2)

(1 − v)3/2(1 − 9v)1/2
. (4.23)

It can be shown that the formula (4.20) represents H1(n, v) provided that v lies in a semi-
infinite region D5 of the cut plane which includes the real interval

(−∞, 1
9

)
, while (4.21) gives

a representation for H2(n, v) which is valid for all v in the cut plane.
Finally, we use the further transformation (see Erdélyi et al (1953), p 112)

2F1

(
a, a +

1

2
; c; x2

)
= (1 + x)−2a

2F1

(
2a, c − 1

2
; 2c − 1; 2x

1 + x

)
(4.24)

with a = 1
4 and c = n + 1, to express (4.6) and (4.10) in the alternative forms

H1(n, v) = 1

(1 − ξ)1/2(1 + 3ξ)3/2 2F1

(
1

2
, n +

1

2
; 2n + 1; k̃2

1

)
(4.25)

H2(n, v) = 1

(1 − ξ)3/2(1 + 3ξ)1/2 2F1

(
1

2
, n +

1

2
; 2n + 1; k̃2

2

)
(4.26)

respectively, where

k̃2
1 ≡ k̃2

1(ξ) = 16ξ

(1 − ξ)(1 + 3ξ)3
(4.27)

k̃2
2 ≡ k̃2

2(ξ) = 16ξ 3

(1 − ξ)3(1 + 3ξ)
(4.28)

and v = ξ 2. It is found that (4.25) represents H1(n, v) provided that ξ lies in a certain finite
region D6 of the ξ plane which includes the real interval

(− 1
3 , 1

3

)
. A diagram showing the

regionD6 has already been given by Joyce (1998, p 5112). The formula (4.26) is valid provided
that ξ ∈ D7, where D7 is a finite region in the ξ plane which also includes the real interval(− 1

3 , 1
3

)
but is considerably larger than the region D6. The region D7 has been illustrated by

Joyce (1994, p 472).

5. Evaluation of H1(n, v) and H2(n, v) in terms of complete elliptic integrals

We shall now use the results derived in the previous section to obtain expressions for
{Hj(n, v) : j = 1, 2} in terms of complete elliptic integrals of the first and second kind. These
formulae will play a crucial role in the proof of the Joyce (2002) conjecture for G(2n, n, n;w).

5.1. Formulae for {H1(n, v),H2(n, v) : n = 0, 1}
When n = 0 it follows from the formulae (4.25) and (4.26) that

H1(0, v) = 1

(1 − ξ)1/2(1 + 3ξ)3/2

(
2

π

)
K
(
k̃1
)

(5.1)

H2(0, v) = 1

(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
K
(
k̃2
)

(5.2)
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where v = ξ 2 and K
(
k̃
)

denotes a complete elliptic integral of the first kind with a modulus
k̃ ≡ k̃(ξ ). We readily find using (4.27) and (4.28) that the modular functions k̃2

1(ξ) and k̃2
2(ξ)

satisfy the cubic modular equation (see Borwein and Borwein (1987), p 125)

W3

[
k̃2

1(ξ), k̃2
2(ξ)

]
= 0 (5.3)

where W3(x, y) is a polynomial of degree 4 in the two variables x and y. It is also known that
(see Joyce (1998), p 5111)

K
[
k̃1(ξ)

]
K
[
k̃2(ξ)

] = 1 + 3ξ

1 − ξ
(5.4)

where ξ ∈ D6. The application of (5.4) to (5.1) gives the relation

H1(0, v) = H2(0, v) = 1

(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
K(k) (5.5)

where

k2 ≡ k̃2
2(ξ) = 16ξ 3

(1 − ξ)3(1 + 3ξ)
(5.6)

and ξ ∈ D7. Particular attention has been focused on the modulus k̃2(ξ) in equation (5.5)
because the region of validity D7 for the formula (5.2) is considerably larger than that for
(5.1). It should be noted that the relation H1(0, v) = H2(0, v) can also be obtained by making
the substitution n = 0 in (3.25) and (3.26).

Next, we evaluate H1(1, v) in terms of complete elliptic integrals by applying the raising
operator R̂1,0 to (5.5). Hence, we find that

H1(1, v) = 1

v

[
B

(1)
1 (1, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
1 (1, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.7)

where ξ ∈ D7,

B
(1)
1 (1, v) = − 1

16 (1 − v)(1 − 9v)(1 + 3v)2 (5.8)

B
(2)
1 (1, v) = 1

16 (1 + 18v − 27v2) (5.9)

and E(k) is the complete elliptic integral of the second kind.
A similar formula for H2(1, v) can be derived by applying the operator R̂2,0 to (5.5). This

procedure gives

H2(1, v) = 1

v3

[
B

(1)
2 (1, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
2 (1, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.10)

where ξ ∈ D7 and

B
(1)
2 (1, v) = − 1

48 (1 − v)3(1 − 9v) (5.11)

B
(2)
2 (1, v) = 1

48 (1 − 6v − 3v2). (5.12)
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5.2. General formulae for H1(n, v) and H2(n, v)

Formulae for the higher-order Heun functions {H1(n, v) : n = 2, 3, . . .} can be generated
using the recursion relation (4.12) and equations (5.5) and (5.7). In particular, it is found that

H1(n, v) = 1

vn

[
B

(1)
1 (n, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
1 (n, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.13)

where ξ ∈ D7 and
{
B

(j)

1 (n, v) : j = 1, 2
}

satisfy the recursion relation

B
(j)

1 (n + 1, v) +
n(n + 1)

4(4n + 1)(4n + 3)

[
(1 − 2v + 9v2)(1 − 90v + 81v2)B

(j)

1 (n, v)

− v(1 − v)(1 − 9v)3B
(j)

1 (n − 1, v)
]

= 0 (5.14)

with n = 1, 2, . . . . The initial conditions for (5.14) are given for j = 1 and j = 2 by{
B

(1)
1 (0, v) = 1, (5.8)

}
and

{
B

(2)
1 (0, v) = 0, (5.9)

}
, respectively. In appendix A we list the

polynomials
{
B

(j)

1 (n, v) : j = 1, 2
}

for n � 4.
In a similar manner, we can use (4.13) and equations (5.5) and (5.10) to express H2(n, v)

in terms of K(k) and E(k). The final result is

H2(n, v) = 1

v3n

[
B

(1)
2 (n, v)(1 − ξ)−3/2(1 + 3ξ)−1/2

(
2

π

)
K(k)

+ B
(2)
2 (n, v)(1 − ξ)3/2(1 + 3ξ)1/2

(
2

π

)
E(k)

]
(5.15)

where ξ ∈ D7 and
{
B

(j)

2 (n, v) : j = 1, 2
}

satisfy the recursion relation

B
(j)

2 (n + 1, v) +
n(n + 1)

4(4n + 1)(4n + 3)

[
(1 − 2v + 9v2)(1 − 10v + v2)B

(j)

2 (n, v)

− v3(1 − v)3(1 − 9v)B
(j)

2 (n − 1, v)
]

= 0 (5.16)

with n = 1, 2, . . . . The initial conditions for (5.16) are given for j = 1 and j = 2 by{
B

(1)
2 (0, v) = 1, (5.11)

}
and

{
B

(2)
2 (0, v) = 0, (5.12)

}
, respectively. In appendix B we list the

polynomials
{
B

(j)

2 (n, v) : j = 1, 2
}

for n � 4.
It is possible to use (5.4), (5.13), (5.15) and the transformation properties of the Heun

equations (3.17) and (3.19) to determine relations between
{
B

(j)

1 (n, v) : j = 1, 2
}

and{
B

(j)

2 (n, v) : j = 1, 2
}
. In particular, we find that

B
(1)
2 (n, v) = (

9v4
)n [

B
(1)
1

(
n,

1

9v

)
+

2

27v2
(1 − v)(1 − 9v)B

(2)
1

(
n,

1

9v

)]
(5.17)

B
(2)
2 (n, v) = −9n−1v4n−2B

(2)
1

(
n,

1

9v

)
. (5.18)

5.3. Connection between H1(n, v) and H2(n, v)

A connection between H1(n, v) and H2(n, v) can be established by first differentiating (5.13)
with respect to v. We then eliminate K(k) and E(k) from the resulting expression using
equations (5.13) and (5.15). This procedure eventually yields the relation

H2(n, v) =
[
A

(1)
2 (n, v) Dv + A

(2)
2 (n, v)

]
H1(n, v) (5.19)
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where

A
(1)
2 (n, v) = (−1)n

(
4

3

)
(4n)!

(n!)2(2n)!
v1−3n(1 − v)1−n(1 − 9v)1−3n

×
(
B

(1)
1 B

(2)
2 − B

(2)
1 B

(1)
2

)
(5.20)

A
(2)
2 (n, v) = (−1)n

(4n)!

3(n!)2(2n)!
v−3n(1 − v)−n(1 − 9v)−3n

×
{

3B
(1)
1 B

(1)
2 − (1 − v)(1 − 9v)

[
(4n − 3)B

(2)
1 B

(1)
2 − (4n + 3)B

(1)
1 B

(2)
2

− 3(1 − v)2B
(2)
1 B

(2)
2 + 4v

(
B

(2)
2

dB
(1)
1

dv
− B

(1)
2

dB
(2)
1

dv

)]}
(5.21)

and B
(j)

i ≡ B
(j)

i (n, v).
Finally, we note that the function A

(1)
2 (n, v) is closely related to the algebraic solution

G(a)(n, z) which is defined in (3.2). In particular, it can be shown that

(1 − 9v2)2n−2
n−1∑
m=0

gm(n)zm = (−1)n−1 4n(4n)!

(n!)2(2n)!

[v(1 − v)(1 − 9v)]−n

(1 − 2v + 9v2)

×
[
B

(1)
1 (n, v)B

(2)
2 (n, v) − B

(2)
1 (n, v)B

(1)
2 (n, v)

]
(5.22)

where z = z(v) is defined in (3.13).

6. Exact product formulae for the Green function G(2n, n, n; w)

Our main purpose in this section is to prove that G(2n, n, n;w) can be written in terms of
a product of two linear forms in K(k) and E(k) whose coefficients are polynomials in the
parameter ξ . It will also be shown that G(2n, n, n;w) is expressible in terms of a product of
two 2F1 hypergeometric functions.

6.1. Proof of the Joyce conjecture for G(2n, n, n;w)

We begin by applying (5.13) and (5.15) to the Heun function product form (3.28). In this
manner, we obtain the ξ parametric formula

G(2n, n, n;w) ≡ (3/w)4nwG(2n, n, n;w) = (288)2n

(
1
4

)
n

(
3
4

)
n

(n!)2

(1 − 9ξ 4)1−4n

(1 − ξ)3(1 + 3ξ)

×
(

2

π

)2 2∏
i=1

[
B

(1)
i (n, v)K(k) + B

(2)
i (n, v)(1 − ξ)3(1 + 3ξ)E(k)

]
(6.1)

where k2 ≡ k̃2
2(ξ) is defined in (5.6),

ξ ≡ ξ(w) = 1

w

(
1 +

√
1 − 1

w2

)−1/2 (
1 +

√
1 − 9

w2

)−1/2

(6.2)

and v = ξ 2. We can determine the polynomials
{
B

(j)

1 (n, v) : j = 1, 2
}

and
{
B

(j)

2 (n, v) :
j = 1, 2

}
in (6.1) using the recursion relations (5.14) and (5.16), respectively. The
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transformation function ξ(w) maps all the points w ∈ C− into a finite region D8 of the ξ

plane which lies entirely within the region of validity D7 for (6.1). It follows, therefore, that
the product form (6.1) can be used to represent G(2n, n, n;w) at any point w = w1 + iw2 in
a complex (w1, w2) plane which is cut along the real axis from w1 = −3 to w1 = +3.

Explicit product forms of the type (6.1) were first obtained by Joyce (2002) for the special
cases n = 0, 1, 2, 3, 4 by following methods developed by Morita (1975). We have derived
these particular formulae by applying the polynomial expressions in appendices A and B to
the general product form (6.1). In all cases agreement was found with the work of Joyce
(2002). Further checks have also been carried out by expanding (6.1) in powers of 1/w for
various integer values of n � 0 and comparing the results with the series (2.10). It should be
noted that (6.1) enables one to calculate extremely accurate values for G(2n, n, n;w) at any
point w ∈ C−. For example, we find that

G(2000, 1000, 1000; 3) = 0.000 064 974 732 759 318 982 257 434 824 986 095 040

447 836 134 237 054 824 872 894 107 567 028 537 432

075 543 202 335 400 657 259 396 774 389 797 702 . . . . (6.3)

If we make the substitution w = w1 − iε in (6.1), where w1 is real and ε > 0, and then
apply the definition (1.3) it is found that the right-hand side of (6.1) can be used to calculate
(3/w1)

4nw1G
−(2n, n, n;w1) for 0 < w1 < 3, provided that ξ = ξ(w) is replaced by

ξ̃ ≡ ξ̃ (w1) = lim
ε→0+

ξ(w1 − iε) = 1

w1

(
1 − i

√
1

w2
1

− 1

)−1/2 (
1 − i

√
9

w2
1

− 1

)−1/2

. (6.4)

For example, when n = 10 and w1 = 2 the modified formula gives

G−(20, 10, 10; 2) = GR(20, 10, 10; 2) + iGI(20, 10, 10; 2) (6.5)

where

GR(20, 10, 10; 2) = 0.002 835 466 154 520 544 442 954 939 811 909 758 470

618 940 267 778 655 555 353 298 266 494 520 382 665

921 664 380 808 874 760 169 510 161 661 424 046 . . . (6.6)

GI(20, 10, 10; 2) = −0.008 023 089 279 720 478 267 990 086 421 714 426 059

884 706 205 832 543 996 224 125 783 704 825 653 686

873 277 311 394 317 013 919 288 705 627 268 880 . . . . (6.7)

It would be very difficult to obtain such highly accurate values for GR(20, 10, 10; 2) and
GI(20, 10, 10; 2) using the integral representations (1.5) and (1.6), respectively, because these
integrals involve oscillatory integrands which have slowly decreasing amplitudes as t → ∞.

6.2. Hypergeometric product forms for G(2n, n, n;w)

We now substitute equations (4.6) and (4.10) in (3.28) and then use the relation (3.29) to
express the final result in terms of the variable w. Hence, we obtain the alternative product
form

wG(2n, n, n;w) =
(

1
4

)
n

(
3
4

)
n

(n!)2

(
w2

w2 + 3

)1/2
w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n

× 2F1

(
1

4
,

3

4
; n + 1; η+

)
2F1

(
1

4
,

3

4
; n + 1; η−

)
(6.8)
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Figure 3. The regions D9 and D10 in the w plane.

where

η± ≡ η±(w) = 1

2
+

w2

2(3 + w2)2

√
1 − 1

w2

[
±16 + (5 − w2)

√
1 − 9

w2

]
. (6.9)

The formula (6.8) will remain valid for varying values of w in the neighbourhood of
w = ∞, provided that the argument function η+(w) does not take real values in the interval
(1, +∞).

In order to establish the precise region of validity for (6.8) we first determine the set of
points S in the w plane which give real values of η+(w) ∈ (

1
2 + 1

4

√
5, +∞ )

. It is found that the
set S forms a closed path which divides the w plane into two regions D9 and D10, as shown in
figure 3. From these results it follows that (6.8) is valid for all w ∈ C− which are in the outer
region D10.

When w is in the inner region D9 it is necessary to modify the derivation of the 2F1

product form by replacing (4.6) with the analytic continuation formula (4.7). This procedure
yields the alternative representation

wG(2n, n, n;w) =
(

1
4

)
n

(
3
4

)
n

(n!)2

(
w2

w2 + 3

)1/2

×


w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n

2F1

(
1

4
,

3

4
; n + 1; η+

)

± i
√

2

−w2

(
1 −

√
1 − 1

w2

)2
n

2F1

(
1

4
,

3

4
; n + 1; 1 − η+

)
× 2F1

(
1

4
,

3

4
; n + 1; η−

)
(6.10)

where the variable w lies in the region D9 with the real interval
[−√

5,
√

5
]

deleted,
and η± ≡ η±(w) are given by (6.9). The upper positive sign in (6.10) is valid when
{Re(w) > 0, Im(w) < 0} and {Re(w) < 0, Im(w) > 0}, while the lower negative sign
is valid when {Re(w) � 0, Im(w) > 0} and {Re(w) � 0, Im(w) < 0}.

Next we make the substitution w = w1 − iε in (6.8), where w1 is real and ε > 0, and then
apply the definition (1.3). This procedure gives
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w1G
−(2n, n, n;w1) =

(
1
4

)
n

(
3
4

)
n

(n!)2

(
w2

1

w2
1 + 3

)1/2
w2

1

8

(√
1

w2
1

− 1 −
√

9

w2
1

− 1

)2
2n

× 2F1

(
1

4
,

3

4
; n + 1; η̃+

)
2F1

(
1

4
,

3

4
; n + 1; η̃−

)
(6.11)

where

η̃± ≡ η̃±(w1) = lim
ε→0+

η±(w1 − iε)

= 1

2
− w2

1

2
(
3 + w2

1

)2

√
1

w2
1

− 1

[
±16i +

(
5 − w2

1

)√ 9

w2
1

− 1

]
(6.12)

provided that
√

5 < w1 � 3. In a similar manner we can use (6.10) to obtain the formula

w1G
−(2n, n, n;w1) =

(
1
4

)
n

(
3
4

)
n

(n!)2

(
w2

1

w2
1 + 3

)1/2

×


w2

1

8

(√
1

w2
1

− 1 −
√

9

w2
1

− 1

)2
2n

2F1

(
1

4
,

3

4
; n + 1; η̃+

)

+ i
√

2

−w2
1

(
1 + i

√
1

w2
1

− 1

)2
n

2F1

(
1

4
,

3

4
; n + 1; 1 − η̃+

)
× 2F1

(
1

4
,

3

4
; n + 1; η̃−

)
(6.13)

where η̃± ≡ η̃±(w1) are defined in (6.12). This second result is valid when 0 < w1 �
√

5.
When n = 0 we can simplify (6.8) by first using (4.6), (4.10) and the relation

H1(0, v) = H2(0, v) to obtain the transformation formula

2F1

[
1

4
,

3

4
; 1; x1(v)

]
=
(

1 + 18v − 27v2

1 − 6v − 3v2

)1/2

2F1

[
1

4
,

3

4
; 1; x2(v)

]
(6.14)

where v ∈ D2 and {xi(v) : i = 1, 2} are defined in (4.3) and (4.8), respectively. Next (3.29)
is applied to (6.14). Hence, we find that

2F1

(
1

4
,

3

4
; 1; η+

)
=
(

w2

w2 + 3

)1/2
(

2 −
√

1 − 9

w2

)
2F1

(
1

4
,

3

4
; 1; η−

)
(6.15)

where η± ≡ η±(w) are defined in (6.9) and w ∈ D10 ∩ C−. From (6.8) and (6.15) we obtain
the required result

G(0, 0, 0;w) = w

w2 + 3

(
2 −

√
1 − 9

w2

)[
2F1

(
1

4
,

3

4
; 1; η−

)]2

. (6.16)

It should be stressed that the final result (6.16) is valid for all w ∈ C−, even though the formula
(6.15) is only valid in a restricted region of the cut w plane.

6.3. Alternative 2F1 product formulae for G(2n, n, n;w)

It is possible to obtain an alternative 2F1 product formula by applying (4.25) and (4.26) to
(3.28). This procedure yields the ξ parametric representation
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wG(2n, n, n;w) =
(

1
4

)
n

(
3
4

)
n

(n!)2

(1 − 9ξ 4)

(1 − ξ)2(1 + 3ξ)2

[
8ξ 2

(1 − ξ 2)(1 − 9ξ 2)

]2n

× 2F1

(
1

2
, n +

1

2
; 2n + 1; k̃2

1

)
2F1

(
1

2
, n +

1

2
; 2n + 1; k̃2

2

)
(6.17)

where ξ ≡ ξ(w) is defined in (6.2), and
{̃
k2
i ≡ k̃2

i (ξ ) : i = 1, 2
}

are given by (4.27) and (4.28),
respectively. This closed-form expression clearly has a simpler structure than the complete
elliptic integral formula (6.1). However, it should be noted that (6.1) is valid for all w ∈ C−,
while (6.17) only has a limited region of validity in the cut w plane.

Fortunately, we can improve this situation by substituting (4.20) and (4.21) in the product
form (3.28) and then using (3.29) to express the final result in terms of the variable w. In this
manner, we find that

wG(2n, n, n;w) =
(

1
4

)
n

(
3
4

)
n

(n!)2

(
2

w2

)2n
(

1

2

√
1 − 1

w2
+

1

2

√
1 − 9

w2

)−4n−1

× 2F1

(
1

2
, 2n +

1

2
; n + 1; k2

+

)
2F1

(
1

2
, 2n +

1

2
; n + 1; k2

−

)
(6.18)

where

k2
± ≡ k2

±(w) = 1

2
+

(√
1 − 1

w2
+

√
1 − 9

w2

)−3

×
(√

1 +
1

w

√
1 − 3

w
+

√
1 − 1

w

√
1 +

3

w

)

×
[
± 8

w2
−
(

1 +
3

w2

)√
1 − 1

w2
−
(

1 − 1

w2

)√
1 − 9

w2

]
. (6.19)

The explicit product form (6.18) is of particular importance because it can be used to determine
the Green function G(2n, n, n;w) at any point w ∈ C−.

7. Evaluation of G(2n, n, n; w) and G−(2n, n, n; w1) for special values of w and w1

We shall now show that the product forms for G(2n, n, n;w) and G−(2n, n, n;w1) can be
simplified when w and w1 take certain special values.

7.1. Evaluation of G(2n, n, n; 3)

When w = 3 it is known from the work of Watson (1939) that

G(0, 0, 0; 3) =
(

18 + 12
√

2 − 10
√

3 − 7
√

6
){ 2

π
K(k[6])

}2

(7.1)

where the modulus

k[6] =
(

2 −
√

3
) (√

3 −
√

2
)

(7.2)

is the singular value of order 6 (Borwein and Borwein 1987, p 139). For any positive integer
N the singular value k[N ] satisfies the equation

K ′(k[N ])

K(k[N ])
=

√
N (7.3)

where K ′(k) ≡ K(k′) and k′ ≡ √
1 − k2 is the complementary modulus.
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More generally it can be shown, by applying singular value theory of the second kind
(Borwein and Borwein 1987, p 152) to the product form (6.1) with w = 3, that

G(2n, n, n; 3) = (−1)n

(
1
4

)
n

(
3
4

)
n

(n!)2

{
G(0, 0, 0; 3)[r1(n)]2 − 32[r2(n)]2

3π2G(0, 0, 0; 3)

}
(7.4)

where {rj (n) : j = 1, 2} satisfy the recursion relation

(4n + 1)(4n + 3)rj (n + 1) − 16n(n + 1)
[
4
√

2rj (n) + rj (n − 1)
]

= 0 (7.5)

with n = 1, 2, . . . . The initial conditions for (7.5) are given for j = 1 and j = 2 by{
r1(0) = 1, r1(1) = 4

3

√
2
}

and
{
r2(0) = 0, r2(1) = 1

}
, respectively. For the particular cases

n = 1 and n = 2, the formula (7.4) gives

G(2, 1, 1; 3) = 2

3

[
3

π2G(0, 0, 0; 3)
− G(0, 0, 0; 3)

]
(7.6)

G(4, 2, 2; 3) = 1

105

[
1225G(0, 0, 0; 3) − 3072

π2G(0, 0, 0; 3)

]
(7.7)

respectively. The formulae (7.6) and (7.7) are in agreement with the work of Glasser and
Boersma (2000).

It is also possible to use (6.8) to obtain the simplified closed-form result

G(2n, n, n; 3) =
(

1
4

)
n

(
3
4

)
n

2
√

3(n!)2
2F1

(
1

4
,

3

4
; n + 1; 1

2
+

√
2

3

)
2F1

(
1

4
,

3

4
; n + 1; 1

2
−

√
2

3

)
.

(7.8)

In section 8 we shall use (7.8) to investigate the asymptotic behaviour of G(2n, n, n; 3) as
n → ∞.

7.2. Evaluation of G−(2n, n, n; 1)

If we make the substitution w1 = 1 in (6.13) we obtain the simplified result

G−(2n, n, n; 1) = GR(2n, n, n; 1) + iGI(2n, n, n; 1) (7.9)

where

GR(2n, n, n; 1) =
(

1
4

)
n

(
3
4

)
n

2(n!)2

[
2F1

(
1

4
,

3

4
; n + 1; 1

2

)]2

(7.10)

GI(2n, n, n; 1) = (−1)n
√

2GR(2n, n, n; 1). (7.11)

It is now possible to use the standard formula (Erdélyi et al 1953, p 104)

2F1

(
1

4
,

3

4
; n + 1; 1

2

)
=

√
πn!

2n
(

n
2 + 5

8

)

(

n
2 + 7

8

) (7.12)

to express (7.10) in the form

GR(2n, n, n; 1) =
√

2

8π


(

n
2 + 1

8

)

(

n
2 + 3

8

)

(

n
2 + 5

8

)

(

n
2 + 7

8

) (7.13)

where (z) denotes the gamma function.
For the special case n = 0 the formula (7.13) can be written as

GR(0, 0, 0; 1) =
[

(

1
8

)

(

3
8

)]2

16π3
. (7.14)
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Next, we consider the relation (see Borwein and Borwein (1987), p 298)

K(k[2]) =
(√

2 + 1
)1/2


(

1
8

)

(

3
8

)
213/4π1/2

(7.15)

where the modulus k[2] = √
2 − 1 is the singular value of order 2. If (7.15) is applied to

(7.14) we obtain the alternative formula

GR(0, 0, 0; 1) =
√

2
(√

2 − 1
){ 2

π
K(k[2])

}2

. (7.16)

The results (7.14) and (7.16) are consistent with the earlier work of Katsura et al (1971a) and
Joyce (1973).

Finally, we note that the formula (7.13) can be used to show that

GR(4N, 2N, 2N; 1) = GR(0, 0, 0; 1)

(
1
8

)
N

(
3
8

)
N(

5
8

)
N

(
7
8

)
N

(7.17)

GR(4N + 2, 2N + 1, 2N + 1; 1) = 2

3π2GR(0, 0, 0; 1)

(
5
8

)
N

(
7
8

)
N(

9
8

)
N

(
11
8

)
N

(7.18)

where N = 0, 1, 2 . . . .

7.3. Evaluation of G−(2n, n, n; 0)

If we make the substitution w = −iε in (3.28) and take the limit ε → 0+, it is found that

G−(2n, n, n; 0) = 8i

3

(
1
4

)
n

(
3
4

)
n

22n(n!)2
H1

(
n,−1

3

)
H2

(
n,−1

3

)
. (7.19)

We now use the formula (4.21) to write

H2

(
0,−1

3

)
= H1

(
0,−1

3

)
= 33/4

2π
K(k[3]) (7.20)

where k[3] = 1
4

√
2
(√

3 − 1
)

is the singular value of order 3. Next, the raising operators R̂1,0

and R̂2,0 are applied to (4.21) with n = 0. This procedure gives

H1

(
1,−1

3

)
= −31/4

(
4

π

){
K(k[3]) − 2E(k[3])

}
(7.21)

and

H2

(
1,−1

3

)
= 1

31/4

(
4

π

){(√
3 + 2

)
K(k[3]) − 2

√
3E(k[3])

}
(7.22)

respectively.
From singular value theory of the second kind (Borwein and Borwein 1987, p 152) it is

known that

4
√

3E(k[3]) = π

K(k[3])
+ 2

(√
3 + 1

)
K(k[3]). (7.23)

This result enables one to express (7.21) and (7.22) in the alternative forms

H1

(
1,−1

3

)
= 4

π31/4

{
K(k[3]) +

π

2K(k[3])

}
(7.24)

and

H2

(
1,−1

3

)
= 4

π31/4

{
K(k[3]) − π

2K(k[3])

}
(7.25)

respectively.
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Formulae for
{
H1

(
n,− 1

3

)
: n = 2, 3, . . .

}
and

{
H2

(
n,− 1

3

)
: n = 2, 3, . . .

}
can now be

generated using the recursion relations (4.12) and (4.13), respectively. In particular, we find
that

H1

(
n,−1

3

)
= 33/4

2π
2n

{
K(k[3])s1(n) +

2π

3K(k[3])
s2(n)

}
(7.26)

H2

(
n,−1

3

)
= 33/4

2π
2n

{
K(k[3])s1(n) − 2π

3K(k[3])
s2(n)

}
(7.27)

where {sj (n) : j = 1, 2} satisfies the recursion relation

(4n + 1)(4n + 3)sj (n + 1) − 8n(n + 1)
[
5sj (n) − 2sj (n − 1)

] = 0 (7.28)

with n = 1, 2, . . . . The initial conditions for (7.28) are given for j = 1 and j = 2 by{
s1(0) = 1, s1(1) = 4

3

}
and {s2(0) = 0, s2(1) = 1}, respectively. Finally, we apply (7.26) and

(7.27) to the formula (7.19). Hence, we find that

GI(2n, n, n; 0) =
(

1
4

)
n

(
3
4

)
n

(n!)2

{
GI(0, 0, 0; 0)[s1(n)]2 − 16

3π2GI(0, 0, 0; 0)
[s2(n)]2

}
(7.29)

where

GI(0, 0, 0; 0) = 2
√

3

π2

{
K(k[3])

}2
. (7.30)

It should be noted that GR(2n, n, n; 0) = 0 for n = 0, 1, 2, . . . .
An alternative closed-form expression for GI(2n, n, n; 0) can be obtained by taking the

limit w1 → 0+ in (6.13). This procedure yields

GI(2n, n, n; 0) =
√

2

3

(
1
4

)
n

(
3
4

)
n

(n!)2 2F1

(
1

4
,

3

4
; n + 1;−1

3

)
Re

[
2F1

(
1

4
,

3

4
; n + 1; 4

3

)]
. (7.31)

In section 8 we shall use (7.31) to investigate the asymptotic behaviour of GI(2n, n, n; 0) as
n → ∞.

7.4. Evaluation of G
(

2n, n, n;±i
√

3
)

In this final subsection we begin by making the substitution w = ±i
√

3 in (3.28). This
procedure yields

G
(

2n, n, n;±i
√

3
)

= ∓ 4i

33/2

(
1
4

)
n

(
3
4

)
n

22n(n!)2

(√
3 − 1

)4n+1
H1(n, vc)H2(n, vc) (7.32)

where

vc ≡ v
(
±i

√
3
)

= −
√

3

9

(
2 −

√
3
)

. (7.33)

Next, we use (4.20) with v = vc to obtain the formula

H1(n, vc) = 33/8

27/4

(√
3 + 1

)1/2

2F1

(
1

2
, 2n +

1

2
; n + 1; 1

2

)
. (7.34)

The application of the standard result (Erdélyi et al 1953, p 104)

2F1

(
1

2
, 2n +

1

2
; n + 1; 1

2

)
=

[

(

1
4

)]2

2π3/2

n!(
3
4

)
n

(7.35)
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to (7.34) gives

H1(n, vc) = 33/8

π23/4

(√
3 + 1

)1/2 n!(
3
4

)
n

K(k[1]) (7.36)

where

K(k[1]) =
[

(

1
4

)]2

4
√

π
(7.37)

and k[1] = 1/
√

2 is the singular value of order 1.
We can use the relation H2(0, v) = H1(0, v) and equation (7.36) to obtain the formula

H2(0, vc) = 33/8

π23/4

(√
3 + 1

)1/2
K(k[1]). (7.38)

If the raising operator R̂2,0 is applied to (4.20) with n = 0 it is also found that

H2(1, vc) = 31/8

π23/4

(√
3 + 1

)9/2 [(
2
√

2 + 31/4
)

K(k[1]) − 4
√

2E(k[1])
]
. (7.39)

From singular value theory of the second kind (Borwein and Borwein 1987, p 152) it is known
that

4E(k[1]) = 2K(k[1]) +
π

K(k[1])
. (7.40)

This result enables one to write (7.39) in the alternative form

H2(1, vc) = 31/8

π23/4

(√
3 + 1

)9/2
[

31/4K(k[1]) − π
√

2

K(k[1])

]
. (7.41)

Formulae for {H2(n, vc) : n = 2, 3, . . .} can now be generated using (7.38), (7.41) and
the recursion relation (4.13). In particular, we find that

H2(n, vc) = 31/8

π23/4

n!

22n
(

1
4

)
n

(√
3 + 1

)4n+ 1
2

{
31/4K(k[1])t1(n) − π

√
2

K(k[1])
t2(n)

}
(7.42)

where {tj (n) : j = 1, 2} satisfies the recursion relation

(4n + 3)tj (n + 1) − 56ntj (n) + (4n − 3)tj (n − 1) = 0 (7.43)

with n = 1, 2, . . . . The initial conditions for (7.43) are given for j = 1 and j = 2 by
{t1(0) = 1, t1(1) = 1} and {t2(0) = 0, t2(1) = 1}, respectively. If the formulae (7.36) and
(7.42) are applied to (7.32) we obtain the required result

G
(

2n, n, n;±i
√

3
)

= G
(

0, 0, 0;±i
√

3
)

t1(n) ± 4i

3π
t2(n) (7.44)

where

G
(

0, 0, 0;±i
√

3
)

= ∓i
23/2

π233/4

{
K(k[1])

}2
. (7.45)

An alternative 2F1 formula for H2(n, vc) can also be derived by substituting v = vc in
(4.10). Hence, we find that

H2(n, vc) = 3

25/2

(√
3 + 1

) 1
2

2F1

(
1

4
,

3

4
; n + 1; 1

2
− 7

24

√
3

)
. (7.46)

From equations (7.32), (7.36) and (7.46) we obtain the closed-form expression

G
(

2n, n, n;±i
√

3
)

= ∓i
K(k[1])

π21/431/8

(
1
4

)
n

n!

(√
3 − 1√

2

)4n

2F1

(
1

4
,

3

4
; n + 1; 1

2
− 7

24

√
3

)
.

(7.47)

In section 8 we shall use (7.47) to investigate the behaviour of G
(
2n, n, n;±i

√
3
)

as n → ∞.
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8. Asymptotic behaviour of G (2n, n, n; w) and G− (2n, n, n; w1) as n → ∞
The asymptotic behaviour of G(�,m, n;w) as (�2 + m2 + n2)1/2 → ∞ has been investigated
by Katsura and Inawashiro (1973) using stationary phase and saddle-point methods. This
work involved complicated calculations and the asymptotic representations for G(�,m, n;w)

were only given to leading order. In this section we shall show that the 2F1 product forms
given in section 6.2 enable one to derive uniform asymptotic expansions for G(2n, n, n;w),
as n → ∞, in a very direct and simple manner.

8.1. General asymptotic representations

We begin by considering the standard asymptotic formula (Luke 1969, p 235)

2F1

(
1

4
,

3

4
; n + 1; η

)
∼ �M(n, η) (8.1)

as n → ∞, where

�M(n, η) ≡
M∑

m=0

(
1
4

)
m

(
3
4

)
m

(n + 1)mm!
ηm (8.2)

and M = 0, 1, 2, . . . . Next we apply (8.1) to the product form (6.8). This procedure yields
the asymptotic representation

G(2n, n, n;w) ∼ 1

wπ
√

2


(
n + 1

4

)

(
n + 3

4

)
[(n + 1)]2

w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n

×
(

w2

w2 + 3

)1/2

�M(n, η+)�M(n, η−) (8.3)

as n → ∞, where M is fixed and η± = η±(w) are defined in (6.9). We expect (8.3) to be valid
provided that w lies in the region D10 of the cut w plane.

A uniform asymptotic expansion for G(2n, n, n;w) can now be derived by expanding the
ratio of gamma functions and the � functions in (8.3) in powers of 1/n. In particular, we find
that

G(2n, n, n;w) ∼ 1

π
√

2wn

w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n (

w2

w2 + 3

)1/2 ∞∑
m=0

b(1)
m (w)

nm

(8.4)

as n → ∞, where b
(1)
0 (w) = 1,

b
(1)
1 (w) = 3w2(5 − w2)

16(w2 + 3)2

√
1 − 1

w2

√
1 − 9

w2
(8.5)

b
(1)
2 (w) = 3

512(w2 + 3)4

(
2979 − 12 284w2 + 5778w4 − 572w6 + 3w8

)
(8.6)

b
(1)
3 (w) = 3w2(5 − w2)

8192(w2 + 3)6

√
1 − 1

w2

√
1 − 9

w2

(
44 307 − 357 564w2

+ 239 538w4 − 10 236w6 − 13w8
)

(8.7)
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b
(1)
4 (w) = 3

524 288(w2 + 3)8

(
857 417 481 − 13 228 000 488w2

+ 32 434 085 628w4 − 27 205 809 624w6 + 8960 294 070w8

− 1187 975 768w10 + 58 488 444w12 − 633 704w14 − 183w16
)

(8.8)

and w ∈ D10.
In a similar manner we can also apply (8.1) to the product form (6.10). Hence, we obtain

G(2n, n, n;w) ∼ 1

wπ
√

2


(
n + 1

4

)

(
n + 3

4

)
[(n + 1)]2

(
w2

w2 + 3

)1/2

�M(n, η−)

×


w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n

�M(n, η+)

± i
√

2

−w2

(
1 −

√
1 − 1

w2

)2
n

�M(n, 1 − η+)

 (8.9)

as n → ∞, with M fixed. We expect (8.9) to be valid provided that w lies in the region D9 with
the real interval

[−√
5,

√
5
]

deleted. The role of the ± signs in equation (8.9) is explained
in section 6.2. If the ratio of gamma functions and the � functions in (8.9) are expanded in
powers of 1/n it is found that

G(2n, n, n;w) ∼ 1

π
√

2wn


w2

8

(√
1 − 1

w2
−
√

1 − 9

w2

)2
2n ∞∑

m=0

b(1)
m (w)

nm

± i
√

2

−w2

(
1 −

√
1 − 1

w2

)2
n ∞∑

m=0

b(2)
m (w)

nm


(

w2

w2 + 3

)1/2

(8.10)

as n → ∞, where b
(2)
0 (w) = 1,

b
(2)
1 (w) = − 3w2

(w2 + 3)2

√
1 − 1

w2
(8.11)

b
(2)
2 (w) = 3

2(w2 + 3)4

(
9 − 47w2 + 24w4 − 2w6

)
(8.12)

b
(2)
3 (w) = − 3w2

4(w2 + 3)6

√
1 − 1

w2

(
1269 − 3138w2 + 1371w4 − 162w6 + 4w8

)
(8.13)

b
(2)
4 (w) = 3

8(w2 + 3)8

(
11 421 − 192 780w2 + 488 691w4 − 417 690w6

+ 137 970w8 − 17 948w10 + 840w12 − 8w14
)

(8.14)

and w ∈ D9 with the real interval
[−√

5,
√

5
]

deleted. It should be noted that the coefficients{
b(1)

m (w), b(2)
m (w) : m = 1, 2, . . .

}
in the expansions (8.4) and (8.10) all become infinite

as w → ±i
√

3. The reasons for this breakdown at w = ±i
√

3 will be discussed in
section 8.3.
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Next we let w = w1 − iε in (8.4), where ε > 0, and then apply the definition (1.3). In
this manner, we find that

G−(2n, n, n;w1) ∼ 1

π
√

2n

w2
1

8

(√
1 − 1

w2
1

+ i

√
9

w2
1

− 1

)2
2n (

1

w2
1 + 3

)1/2 ∞∑
m=0

b̃(1)
m (w1)

nm

(8.15)

as n → ∞, where
√

5 < w1 � 3 and b̃
(1)
0 (w1) = 1. Formulae for

{̃
b(1)

m (w1) : m = 1, 2, 3, 4
}

can be readily obtained by making the formal replacements w 	→ w1 and√
1 − 9

w2
	→ −i

√
9

w2
1

− 1 (8.16)

in the right-hand sides of equations (8.5)–(8.8), respectively. When 0 < w1 �
√

5 we can use
(8.10) to derive the alternative asymptotic expansion

G−(2n, n, n;w1) ∼ 1

π
√

2n


w2

1

8

(√
1

w2
1

− 1 −
√

9

w2
1

− 1

)2
2n ∞∑

m=0

b̃(1)
m (w1)

nm

+ i
√

2

−w2
1

(
1 + i

√
1

w2
1

− 1

)2
n ∞∑

m=0

b̃(2)
m (w1)

nm


(

1

w2
1 + 3

)1/2

(8.17)

as n → ∞, where b̃
(2)
0 (w1) = 1. Formulae for

{̃
b(2)

m (w1) : m = 1, 2, 3, 4
}

can be written
down by making the formal replacements w 	→ w1 and√

1 − 1

w2
	→ −i

√
1

w2
1

− 1 (8.18)

in the right-hand sides of equations (8.11)–(8.14), respectively.

8.2. Some special cases

We shall now derive expansions for G(2n, n, n; 3),G−(2n, n, n; 1) and G−(2n, n, n; 0) in
powers of 1/n using results given in section 7.

We begin the analysis by applying (8.1) to the formula (7.8). Hence, we obtain the
asymptotic representation

G(2n, n, n; 3) ∼ 1

2π
√

6


(
n + 1

4

)

(
n + 3

4

)
[(n + 1)]2

�M

(
n,

1

2
+

√
2

3

)
�M

(
n,

1

2
−

√
2

3

)
(8.19)

as n → ∞. If the ratio of gamma functions and the � functions in (8.19) are expanded in
powers of 1/n we find that

G(2n, n, n; 3) ∼ 1

2π
√

6n

(
1 − 1

96n2
− 157

18 432n4
− 3557

1769 472n6
+

10 544 227

679 477 248n8

+
590 022 059

21 743 271 936n10
− 2774 734 887 161

12 524 124 635 136n12
− 539 053 078 139 887

400 771 988 324 352n14

+
44 569 070 631 361 169

3799 912 185 593 856n16
+

16 912 634 548 105 896 634 117

88 644 351 465 533 472 768n18
+ · · ·

)
(8.20)



5444 G S Joyce and R T Delves

as n → ∞. It has been verified that (8.20) is consistent with the general expansion (8.4).
Duffin (1953) has used completely different methods to prove that

G(�,m, n; 3) ∼ 1

2πR

{
1 +

1

8R2

[
−3 +

5(�4 + m4 + n4)

R4

]
+ O

(
1

R4

)}
(8.21)

as R = (�2 + m2 + n2)1/2 → ∞. When � = 2n and m = n this result is in agreement with the
first two terms in the expansion (8.20). We have also used (8.20) to calculate an approximate
value for G(2n, n, n; 3) when n = 1000. It is found from (6.3) that this asymptotic value has
an error of −9.8545 · · · × 10−62.

Next we expand the exact formula (7.13) in powers of 1/n. This procedure yields

G−(2n, n, n; 1) =
[
1 + i

√
2(−1)n

]
GR(2n, n, n; 1) (8.22)

where

GR(2n, n, n; 1) ∼ 1

2π
√

2n

(
1 − 3

32n2
+

123

2048n4
− 7719

65 536n6
+

4 115 283

8 388 608n8

− 950 375 949

268 435 456n10
+

674 225 797 359

17 179 869 184n12
− 340 018 590 242 127

549 755 813 888n14

+
1848 888 327 048 988 803

140 737 488 355 328n16
− 1628 742 598 405 608 165 009

4503 599 627 370 496n18
+ · · ·

)
(8.23)

as n → ∞. If we compare this result with the general expansion (8.17) it is found that the
coefficient of 1/n2m in (8.23) is given by b̃

(1)
2m(1) = b̃

(2)
2m(1), where m = 0, 1, 2, . . . .

Finally, we use (7.31) and (8.1) to obtain the asymptotic representation

GI(2n, n, n; 0) ∼ 1

π
√

3


(
n + 1

4

)

(
n + 3

4

)
[(n + 1)]2

�M

(
n,−1

3

)
�M

(
n,

4

3

)
(8.24)

as n → ∞, with M fixed. It follows from this result that

G−(2n, n, n; 0) = iGI(2n, n, n; 0) ∼ i

π
√

3n

(
1 +

1

6n2
+

47

72n4
+

3047

432n6

+
1630 243

10 368n8
+

123 577 081

20 736n10
+

256 585 238 971

746 496n12
+

41 881 050 557 657

1492 992n14

+
24 505 855 348 810 649

7962 624n16
+

563 629 394 387 436 037 523

1289 945 088n18
+ · · ·

)
(8.25)

as n → ∞. If we compare (8.25) with the general expansion (8.17) it is found that the
coefficient of 1/n2m in (8.25) is given by b̃

(2)
2m(0), where m = 0, 1, 2, . . . . It should be

noted that, in the limit w1 → 0+, the asymptotic formula (8.17) represents the zero value for
GR(2n, n, n; 0) by negligible terms of O(4−n), as n → ∞.

8.3. Multiple turning points

Our main aim in this final subsection is to investigate the reasons for the breakdown of the
asymptotic expansions (8.4) and (8.10) as w → ±i

√
3. We begin by making the transformation

y = v−(n+1)/2(1 − v)(n−1)/2(1 − 9v)(3n−1)/2Y (8.26)

to the Heun equation (3.17), where Y is a new dependent variable. This procedure reduces
(3.17) to the normal form

d2Y

dv2
= [

n2f (v) + g(v)
]
Y (8.27)
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where

f (v) =
[

(v − vc)
(
27v + v−1

c

)
2v(1 − v)(1 − 9v)

]2

(8.28)

g(v) = − (1 − 12v + 102v2 − 108v3 + 81v4)

[2v(1 − v)(1 − 9v)]2
(8.29)

and

vc = −
√

3

9

(
2 −

√
3
)

. (8.30)

We see that the differential equation (8.27) has turning points of multiplicity 2 (Olver
1977) at v = vc and −1/(27vc). If we make the substitution w = ±i

√
3 in the transformation

formula (3.29) it is found that v
(± i

√
3
) = vc. It follows, therefore, that the expansions (8.4)

and (8.10) break down as w → ±i
√

3 because the Heun equation (3.17) is associated with a
multiple turning point at v = vc. It should be noted that the turning point at v = −1/(27vc)

does not affect the asymptotic behaviour of G(2n, n, n;w) because the point v = −1/(27vc)

lies outside the region D1 shown in figure 1.
In a similar manner, we find that the second Heun equation (3.19) also has a normal form

of the type (8.27) with turning points of multiplicity 2 at v = −3vc and 1/(9vc). Fortunately,
both these turning points are outside the region D1 of physical interest in the v plane.

Asymptotic representations for G(2n, n, n;w) which are uniformly valid in the immediate
neighbourhood of w = ±i

√
3 could be established by applying the sophisticated methods

developed by Olver (1977, 1978) to the turning point v = vc of the differential equation (8.27).
One would expect that the leading-order terms in these representations are expressible in terms
of modified Bessel functions of order 1/4. For the special case w = ±i

√
3 we can use (7.47)

and (8.1) to derive the asymptotic expansion

G
(

2n, n, n;±i
√

3
)

∼ ∓i

(

1
4

)
4π3/221/431/8

(√
3 − 1√

2

)4n
1

n3/4

[
1 − 7

√
3

128n

− 77

2(128n)2
+

5929
√

3

2(128n)3
+

4384 611

8(128n)4
− 329 524 657

√
3

8(128n)5

+
49 140 081 463

16(128n)6
− 4034 376 432 471

√
3

16(128n)7

+
22 612 364 314 605 219

128(128n)8
− 2471 042 735 575 208 333

√
3

128(128n)9
+ · · ·

]
(8.31)

as n → ∞. A striking feature of this expansion is that the amplitude factor n−3/4 does not
obey the expected n−1 decay law.

Appendix A. Polynomials
{
B

(j)
1 (n, v) : j = 1, 2

}
for n � 4

B
(1)
1 (0, v) = 1

B
(1)
1 (1, v) = − 1

16
(1 − v)(1 − 9v)(1 + 3v)2

B
(1)
1 (2, v) = 1

1120
(1 − v)2(1 − 9v)(1 + 9v)(1 − 78v + 72v2 − 162v3 − 729v4)
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B
(1)
1 (3, v) = − 1

73 920
(1 − v)3(1 − 9v)(1 − 90v + 4428v2 + 49 572v3

− 65 610v4 + 669 222v5 − 708 588v6 + 4782 969v8)

B
(1)
1 (4, v) = 1

4804 800
(1 − v)3(1 − 9v)(1 − 116v + 6642v2 − 285 660v3

− 3342 465v4 + 7925 688v5 − 83 377 188v6 + 299 024 136v7

− 884 849 265v8 + 1052 253 180v9 + 774 840 978v10

− 4649 045 868v11 + 3486 784 401v12)

B
(2)
1 (0, v) = 0

B
(2)
1 (1, v) = 1

16
(1 + 18v − 27v2)

B
(2)
1 (2, v) = − 1

1120
(1 − 2v + 9v2)(1 + 18v − 27v2)(1 − 90v + 81v2)

B
(2)
1 (3, v) = 1

73 920
(1 + 18v − 27v2)(1 − 114v + 7044v2 − 32 724v3

+ 185 166v4 − 607 986v5 + 1 338 444v6 − 1 417 176v7 + 531 441v8)

B
(2)
1 (4, v) = − 1

4804 800
(1 − 2v + 9v2)(1 + 18v − 27v2)(1 − 90v + 81v2)

× (1 − 48v + 5196v2 − 14 904v3 + 121 014v4 − 559 872v5

+ 1338 444v6 − 1417 176v7 + 531 441v8)

Appendix B. Polynomials
{
B

(j)
2 (n, v) : j = 1, 2

}
for n � 4

B
(1)
2 (0, v) = 1

B
(1)
2 (1, v) = − 1

48
(1 − v)3(1 − 9v)

B
(1)
2 (2, v) = 1

3360
(1 − v)3(1 − 9v)(1 − 12v + 30v2 − 44v3 + 9v4)

B
(1)
2 (3, v) = − 1

221 760
(1 − v)3(1 − 9v)(1 − 24v + 204v2 − 786v3

+ 1710v4 − 2196v5 + 2628v6 − 594v7 + 81v8)

B
(1)
2 (4, v) = 1

14 414 400
(1 − v)3(1 − 9v)(1 − 36v + 522v2 − 3980v3

+ 17 895v4 − 51 816v5 + 102 156v6 − 144 792v7

+ 146 655v8 − 163 380v9 + 37 962v10 − 7452v11 + 729v12)

B
(2)
2 (0, v) = 0

B
(2)
2 (1, v) = 1

48
(1 − 6v − 3v2)

B
(2)
2 (2, v) = − 1

3360
(1 − 2v + 9v2)(1 − 6v − 3v2)(1 − 10v + v2)

B
(2)
2 (3, v) = 1

221 760
(1 − 6v − 3v2)(1 − 24v + 204v2 − 834v3 + 2286v4

− 3636v5 + 7044v6 − 1026v7 + 81v8)

B
(2)
2 (4, v) = − 1

14 414 400
(1 − 2v + 9v2)(1 − 6v − 3v2)(1 − 10v + v2)

× (1 − 24v + 204v2 − 768v3 + 1494v4 − 1656v5 + 5196v6 − 432v7 + 81v8)
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